Origins, colonization, and lineage recombination in a widespread perennial soybean polyploid complex.
نویسندگان
چکیده
Polyploidy is a dominant feature of flowering plant genomes, including those of many important crop species, implying that polyploidy confers evolutionary advantages on plant species. Recent molecular studies suggest that polyploids often originate many times from the same progenitor diploids. For this to provide a broader genetic base for a polyploid species, there must be lineage recombination in the genomes of polyploids having different origins, and this has rarely been documented in recently formed wild polyploid species. Glycine tabacina, a wild relative of soybean, forms a widespread polyploid complex in Australia and the islands of the Pacific Ocean. In a sample of 40 G. tabacina plants, DNA sequence variation at one homoeologous histone H3-D locus identified three alleles, each also found in Australian diploid Glycine species. These data agree with our previous studies of chloroplast DNA variation in suggesting that this polyploid has originated several times. Both the origins of the polyploid and several independent dispersals from Australia to oceanic islands appear to have occurred within the last 30,000 years. The distributions of histone alleles, chloroplast haplotypes, and alleles at two isozyme loci were uncorrelated, and 20 multilocus genotypes were found among the 40 plants sampled. Extensive lineage recombination is thus hypothesized in the polyploid, involving migration and occasional outcrossing in this predominantly inbreeding species. The combination of multiple origins with gene exchange among lineages increases the genetic base of a polyploid and may help explain the wide colonization of polyploid G. tabacina relative to its diploid progenitors.
منابع مشابه
Mining transcriptomic data to study the origins and evolution of a plant allopolyploid complex
Allopolyploidy combines two progenitor genomes in the same nucleus. It is a common speciation process, especially in plants. Deciphering the origins of polyploid species is a complex problem due to, among other things, extinct progenitors, multiple origins, gene flow between different polyploid populations, and loss of parental contributions through gene or chromosome loss. Among the perennial ...
متن کاملNumerous mitochondrial DNA haplotypes reveal multiple independent polyploidy origins of hexaploids in Carassius species complex
Evolutionary trajectory and occurrence history of polyploidy have been extensively studied in plants, but they remain quite elusive in vertebrates. Here, we sampled and gathered 4,159 specimens of polyploid Carassius species complex including 1,336 tetraploids and 2,823 hexaploids from a large geographic scale (49 localities) across East Asia, and identified a huge number of 427 diverse haploty...
متن کاملPolyploid Origins, Experimental Evolution of Gene Duplicates, and Duplication and Divergence of Reproductive Genes
Polyploidization is one of the few mechanisms that can produce instantaneous speciation. Among animals, gray tree frogs (Hyla versicolor complex) have been the source of considerable debate regarding speciation by polyploidization. Molecular evidence and advertisement calls indicate that tetraploid gray tree frogs originated multiple times from extant diploid gray tree frogs and two lineages of...
متن کاملDisentangling reticulate evolution in an arctic-alpine polyploid complex.
Although polyploidy plays a fundamental role in plant evolution, the elucidation of polyploid origins is fraught with methodological challenges. For example, allopolyploid species may confound phylogenetic reconstruction because commonly used methods are designed to trace divergent, rather than reticulate patterns. Recently developed techniques of phylogenetic network estimation allow for a mor...
متن کاملPolyploid and hybrid evolution in roses east of the Rocky Mountains.
This study investigates the impact of hybridization and polyploidy in the evolution of eastern North American roses. We explore these processes in the Rosa carolina complex (section Cinnamomeae), which consists of five diploid and three tetraploid species. To clarify the status and origins of polyploids, a haplotype network (statistical parsimony) of the glyceraldehyde 3-phosphate dehydrogenase...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 96 19 شماره
صفحات -
تاریخ انتشار 1999